
Prepared for
Brank Dev
Avantis Labs, Inc.

Prepared by
Nipun Gupta
Jisub Kim
Zellic

September 11, 2024

Avantis
Smart Contract Security Assessment

Avantis Smart Contract Security Assessment September 11, 2024

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 6

2. Introduction 6

2.1. About Avantis 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Liquidations and SL/TP trigger might fail due to unnecessary check 11

3.2. More rewards allocated to the vault than available 13

3.3. Referrer rebate not paid by traders while closing a position 15

3.4. Incorrect type verification in force unregistration 17

3.5. Require check in distributePnlRewardsFraction could be improved 19

3.6. Pending codeOwners are not deleted in govSetCodeOwner 20

3.7. Invalid pair index 22

3.8. PairInfos could not update the address of PairStorage 23

Zellic © 2024 ← Back to Contents Page 2 of 38

Avantis Smart Contract Security Assessment September 11, 2024

3.9. Initialize functions are front-runnable 24

4. Discussion 24

4.1. Referral contract inherits PausableUpgradeable, but it is not used 25

4.2. Broken checks-effects-interactions patterns 25

4.3. Ambiguous comments 26

5. ThreatModel 26

5.1. Module: Trading.sol 27

6. Assessment Results 37

6.1. Disclaimer 38

Zellic © 2024 ← Back to Contents Page 3 of 38

Avantis Smart Contract Security Assessment September 11, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Page 4 of 38

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

Avantis Smart Contract Security Assessment September 11, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Avantis Labs, Inc. from August 26th to September 5th,
2024. During this engagement, Zellic reviewed Avantis's code for security vulnerabilities, design
issues, and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Are the liquidations triggered at correct prices?
• Are there instances where values for traders and liquidity providers are inaccurate?
• Are there caseswhere users havemore access than intended, potentially allowing them
to run bots for executing their own trades?

• Are there oracle risk or configuration bugs with delegations?
• Are the new Pnl type of trades being executed as expected?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody
• Bots responsible for tracking and executing liquidations, limit orders, and stop-limit
orders

• Bots responsible for unlocking overdue locked tranches, distributing rewards at regular
intervals, setting order-book depth for dynamic spread on crypto pairs, and snapshotting
the current open PNL of all trades to update the buffer ratio

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

Zellic © 2024 ← Back to Contents Page 5 of 38

Avantis Smart Contract Security Assessment September 11, 2024

1.4. Results

During our assessment on the scoped Avantis contracts, we discovered nine findings. No critical
issues were found. Four findings were of high impact, twowere ofmedium impact, twowere of low
impact, and the remaining finding was informational in nature.

Additionally, Zellic recorded its notes and observations from the assessment for the benefit of
Avantis Labs, Inc. in the Discussion section (4. ↗).

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 4

■ Medium 2

■ Low 2

■ Informational 1

Zellic © 2024 ← Back to Contents Page 6 of 38

Avantis Smart Contract Security Assessment September 11, 2024

2. Introduction 2.1. About Avantis

Avantis Labs, Inc. contributed the following description of Avantis:

Avantis is developing a user-friendly decentralized leveraged trading platform, where users
can long or short synthetic crypto, forex and commodities using a financial primitive called
"perpetuals".

Synthetic leverage combined with a USDC stablecoin LP makes Avantis very capital efficient,
allowing for a wide selection of trade-able assets and high leverage (up to 100x). We are also
unlockingfine-grained riskmanagement for our LPs via timeand risk parameters, allowingany
LP to be a sophisticatedmarket maker for all kinds of derivatives, starting with perpetual.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform's design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

Zellic © 2024 ← Back to Contents Page 7 of 38

Avantis Smart Contract Security Assessment September 11, 2024

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped contracts itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024 ← Back to Contents Page 8 of 38

Avantis Smart Contract Security Assessment September 11, 2024

2.3. Scope

The engagement involved a review of the following targets:

Avantis Contracts

Type Solidity

Platform EVM-compatible

Target avantis-contracts

Repository https://github.com/brankdev/avantis-contracts ↗

Version 305e3d9b97b7c91fb491fc36276a72e78e7348e0

Programs PairInfos.sol
PairStorage.sol
PriceAggregator.sol
Referral.sol
Trading.sol
TradingCallbacks.sol
TradingStorage.sol
Tranche.sol
VaultManager.sol

2.4. Project Overview

Zellicwas contracted to performa security assessment for a total of 2.5 person-weeks. The assess-
ment was conducted by two consultants over the course of two calendar weeks.

Zellic © 2024 ← Back to Contents Page 9 of 38

https://github.com/brankdev/avantis-contracts

Avantis Smart Contract Security Assessment September 11, 2024

Contact Information

The following project managers were associ-
ated with the engagement:

Jacob Goreski
EngagementManager
jacob@zellic.io ↗

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Nipun Gupta
Engineer
nipun@zellic.io ↗

Jisub Kim
Engineer
jisub@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

August 26, 2024 Start of primary review period

August 28, 2024 Kick-off call

September 5, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Page 10 of 38

mailto:jacob@zellic.io
mailto:chad@zellic.io
mailto:nipun@zellic.io
mailto:jisub@zellic.io

Avantis Smart Contract Security Assessment September 11, 2024

3. Detailed Findings 3.1. Liquidations and SL/TP trigger might fail due to unnecessary check

Target VaultManager

Category CodingMistakes Severity High

Likelihood High Impact High

Description

When a trade is unregistered, a part of the trader fee goes to the referrer as the referrerRebate.
This rebate isdeducted fromthePNLof the trader, and the functionsendReferrerRebateToStorage
is called to transfer this amount to the storage contract. The function has a check to verify that the
amount is not greater than the totalRewards, as shown below:

function sendReferrerRebateToStorage(uint _amount)
external override onlyCallbacks {
require(_amount > 0, "NO_REWARDS_ALLOCATED");
require(totalRewards >= _amount, "UNDERFLOW_DETECTED");
IERC20(junior.asset()).safeTransfer(address(storageT), _amount);

emit ReferralRebateAwarded(_amount);
}

As the _amount is taken from the trader PNL and not the totalRewards, there is no need for the
second require statement. The value of totalRewards could be less than _amount, for example in
the case distributeRewardsWithThreshold is called, which reduces the value of totalRewards as
these rewards are distributed. This could lead to _unregisterTrade being reverted, causing the
closing of trades to be unsuccessful.

Impact

If the closing of trades are reverted, it would in turn lead to failure of stop-loss/take-profit triggers
and the liquidations being reverted too.

Recommendations

We recommend removing the require statement.

Zellic © 2024 ← Back to Contents Page 11 of 38

Avantis Smart Contract Security Assessment September 11, 2024

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
61a5c8c2 ↗.

Zellic © 2024 ← Back to Contents Page 12 of 38

https://github.com/brankdev/avantis-contracts/commit/61a5c8c2aefe7a543363695f5ae0fb75ac5a76ba

Avantis Smart Contract Security Assessment September 11, 2024

3.2. More rewards allocated to the vault than available

Target TradingStorage

Category CodingMistakes Severity High

Likelihood High Impact High

Description

When a trade is opened, the positionSizeUSDC of the trade is decremented by the fee amount.
When a trade is pending, the USDC remains in the storage contract, and it is transferred to the vault
manager when the trade is finalized. The _registerTrade function calls the handleDevGovFees in
the storage contract, which transfers the rewards to be allocated to the vault manager.

As the dev fee, referrer rebate, and the governance fees are already in the storage contract, they
are not required to be transferred. But the vaultAllocation - referrerRebate is transferred to
the vault manager. This is the amount that should be increased as the totalRewards in the vault
manager. However, the function handleDevGovFees calls allocateRewardswith vaultAllocation
instead of vaultAllocation - referrerRebate, as shown below:

function handleDevGovFees(
//...

) external override onlyTrading returns (uint feeAfterRebate) {
//...
if (_usdc) IERC20(usdc).safeTransfer(address(vaultManager),
vaultAllocation - referrerRebate);
//...
vaultManager.allocateRewards(vaultAllocation, false);
//...

}

Impact

The rewards allocated to the vault manager aremore than the actual rewards transferred.

Recommendations

Call allocateRewardswith vaultAllocation - referrerRebate instead of vaultAllocation.

Zellic © 2024 ← Back to Contents Page 13 of 38

Avantis Smart Contract Security Assessment September 11, 2024

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
2501eef7 ↗.

Zellic © 2024 ← Back to Contents Page 14 of 38

https://github.com/brankdev/avantis-contracts/commit/2501eef70ca6c5eda3963f91b03cbe2662aa771e

Avantis Smart Contract Security Assessment September 11, 2024

3.3. Referrer rebate not paid by traders while closing a position

Target TradingCallbacks

Category CodingMistakes Severity High

Likelihood High Impact High

Description

When a trade is closed, fees are deducted from the trader's PNL. The are two different fees: the LP
fees and the executor fees. The LP fees are further split into the vault allocation, governance fees,
dev fees, and the referrer rebate.

The LP fees also go though a discount process. The discount is applied to the LP fees in the referral
contract, which also returns the referrer rebate, as shown below:

traderFeesPostDiscount = _fee - (_fee * referralTiers[_tierId].feeDiscountPct)
/ _BASIS_POINTS;

rebateShare = (traderFeesPostDiscount * referralTiers[_tierId].refRebatePct)
/ _BASIS_POINTS;

uint feeDiscount = traderFeesPostDiscount
* discountTiers[traderTiers[_account]].feeDiscountPct / _BASIS_POINTS;

traderFeesPostDiscount = traderFeesPostDiscount - feeDiscount;

Finally, the values traderFeesPostDiscount and rebateShare are returned in the _unregister-
Trade function as feeAfterRebate and referrerRebate. The feeAfterRebate actually includes the
referrerRebatewhich should be deducted from it to calculate the vaultAllocation and the gov-
Fees but currently its not deducted.

Impact

The referrer rebate is not paid by the trader but the vault manager.

Recommendations

We recommend adding the rebateShare to the totalFees paid by the trader.

Zellic © 2024 ← Back to Contents Page 15 of 38

Avantis Smart Contract Security Assessment September 11, 2024

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
39bb823b ↗.

Zellic © 2024 ← Back to Contents Page 16 of 38

https://github.com/brankdev/avantis-contracts/commit/39bb823bd19f0f7b1b60f6436dd88c9d34506f73

Avantis Smart Contract Security Assessment September 11, 2024

3.4. Incorrect type verification in force unregistration

Target TradingStorage

Category CodingMistakes Severity High

Likelihood Medium Impact High

Description

The function forceUnregisterPendingMarketOrder is used to forcefully unregister a pendingmar-
ket order. It is used as a last resort in case a trader's collateral gets stuck in the storage. It
takes the _id of the pending market order as an argument and loops through the pending or-
der IDs to find the order with the given _id. Then it checks if the orderType is IPriceAggrega-
tor.OrderType.MARKET_OPEN. If it is, it decreases the count of pendingMarketOpenCount for that
pairIndex for the trader; otherwise, it decreases the count of pendingMarketCloseCount for that
pairIndex for the trader.

function forceUnregisterPendingMarketOrder(uint _id)
external override onlyTrading{

//...

for (uint i = 0; i < orderIds.length; i++) {
if (orderIds[i] == _id) {

if (orderType == IPriceAggregator.OrderType.MARKET_OPEN) {

pendingMarketOpenCount[_order.trade.trader][_order.trade.pairIndex]--;
} else {

pendingMarketCloseCount[_order.trade.trader][_order.trade.pairIndex]--;
_openTradesInfo[_order.trade.trader][_order.trade.pairIndex]
[_order.trade.index]

.beingMarketClosed = false;
}

//...
}

After the recent changes in the order types, the openmarket orders are of two types: MARKET_OPEN
and MARKET_OPEN_PNL. The function should check the open orders of both of these types.

Zellic © 2024 ← Back to Contents Page 17 of 38

Avantis Smart Contract Security Assessment September 11, 2024

Impact

If the order type is MARKET_OPEN_PNL, it would decrease the count of pendingMarketCloseCount for
that pairIndex for the trader instead of pendingMarketOpenCount.

Recommendations

Werecommendchecking theorder type forbothMARKET_OPENandMARKET_OPEN_PNL in the function.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
7a5e1dc1 ↗.

Zellic © 2024 ← Back to Contents Page 18 of 38

https://github.com/brankdev/avantis-contracts/commit/7a5e1dc101e3f96c8fde81c9c7767514216b269c

Avantis Smart Contract Security Assessment September 11, 2024

3.5. Require check in distributePnlRewardsFraction could be improved

Target VaultManager

Category CodeMaturity Severity Medium

Likelihood Low Impact Medium

Description

The function distributePnlRewardsFraction is used to distribute the pnlRewards. The VaultMan-
ager contract has both the pnlRewards and the totalRewards; therefore, it is essential to check that
the distribution of pnlRewards is not depleting the totalRewards. The require check in the function
only checks that the balance of the contract is greater than the rewards to distribute without taking
into account that the balance also includes the totalRewards amount.

require(IERC20(junior.asset()).balanceOf(address(this)) >
pnlRewardsToDistribute, "INSUFFICIENT_BALANCE");

Impact

If the rewards distributed by the function are greater than the pnlRewards (in case the fraction is
greater than 100), there would not be enough balance in the VaultManager to cover the totalRe-
wards amount.

Recommendations

We recommendmodifying the require statement to the following:

require(IERC20(junior.asset()).balanceOf(address(this)) - totalRewards >
pnlRewardsToDistribute, "INSUFFICIENT_BALANCE");

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
5a64eddd ↗.

Zellic © 2024 ← Back to Contents Page 19 of 38

https://github.com/brankdev/avantis-contracts/commit/5a64eddd6f1635baa7a2dab964d4f2bce49ee6cd

Avantis Smart Contract Security Assessment September 11, 2024

3.6. Pending codeOwners are not deleted in govSetCodeOwner

Target Referral

Category Business Logic Severity Medium

Likelihood Low Impact Medium

Description

The function govSetCodeOwner is used to set the code owner of a provided _code to a new address.
The function deletes the codes and the codeOwnersmapping of the previous code owner. However,
it does not delete the pendingCodeOwners mapping of _code and codes[_newAccount], as shown
below:

function govSetCodeOwner(bytes32 _code, address _newAccount)
external override onlyGov {
require(_code != bytes32(0), "Referral: invalid _code");

address account = codeOwners[_code];
delete codes[account];
delete codeOwners[codes[_newAccount]];

codeOwners[_code] = _newAccount;
codes[_newAccount] = _code;
referrerTiers[_newAccount] = referrerTiers[account];

delete referrerTiers[account];
emit GovSetCodeOwner(_code, _newAccount);

}

Impact

If the _code has a pending code owner, they could claim the ownership of the _code after the gov-
ernance sets the new code owner. This would take away the ownership from the new code owner,
which was set by the governance.

Recommendations

We recommend deleting the pendingCodeOwnersmapping of the _code and codes[_newAccount]
in the govSetCodeOwner function.

Zellic © 2024 ← Back to Contents Page 20 of 38

Avantis Smart Contract Security Assessment September 11, 2024

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
67418b0a ↗.

Zellic © 2024 ← Back to Contents Page 21 of 38

https://github.com/brankdev/avantis-contracts/commit/67418b0af91dc634c9a68ecd08f6bd9b09b94598

Avantis Smart Contract Security Assessment September 11, 2024

3.7. Invalid pair index

Target PairStorage

Category CodingMistakes Severity Medium

Likelihood Low Impact Low

Description

Some functions that use _pairIndex as aparameter in PairStoragedonot check if a givenpair index
is valid. You can findmany of those patterns in the codebase.

For example, calling the guaranteedSlEnabled function with an incorrect pair index will always re-
turn true.

function guaranteedSlEnabled(uint _pairIndex)
external view override returns (bool) {

uint groupIndex = pairs[_pairIndex].groupIndex;
if(groupIndex == 2 || groupIndex == 3) return false; // Disabled for

Forex and commodities
return true;

}

This is because the typeof pairs is mapping(uint256 => Pairs), and accessingpairswith an invalid
pair index will return the default pair. The default pair will return default values of eachmember. So
in this case, pairs[_pairIndex].groupIndexwill return zero since the type of groupIndex is uint.
Thus, the return value of a function with an invalid _pairIndexwill always return true.

Impact

An incorrect pair indexmay lead to confusing the system.

Recommendations

We recommend checking the index is mapped correctly.

Remediation

This issue has been acknowledged by Avantis Labs, Inc..

Zellic © 2024 ← Back to Contents Page 22 of 38

Avantis Smart Contract Security Assessment September 11, 2024

3.8. PairInfos could not update the address of PairStorage

Target PairInfos

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

The Avantis team is planning to migrate the PairStorage contract to a new address. This would re-
quire the address of the PairStorage contract to be updated in all the contracts that use it. While
there is a updatePairsStorage function in the PriceAggregator contract, there is no such function
in the PairInfos contract.

Impact

The PairInfos contract is not able to update the address of the PairStorage contract.

Recommendations

We recommend upgrading the PairInfos contract to add a function that would allow to update the
pairsStorage address in the PairInfos contract.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
951f404c ↗.

Zellic © 2024 ← Back to Contents Page 23 of 38

https://github.com/brankdev/avantis-contracts/commit/951f404c646cd8bafe9bc1fd3cbac8d991c8c6b5

Avantis Smart Contract Security Assessment September 11, 2024

3.9. Initialize functions are front-runnable

Target All In-scope Contracts

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

All initialize functions are front-runnable. The absence of an access-control modifier in these
functions means anyone can initialize the contract directly. For example, there is no modifier in the
initialize function of PairInfos:

function initialize(address _storageT, address _pairsStorage)
external initializer {
storageT = ITradingStorage(_storageT);
pairsStorage = IPairStorage(_pairsStorage);
liqThreshold = 85;

}

Impact

There is no security impact since it will not be used if someone has already initialized this.

Recommendations

We recommend adding an admin role to all initialize functions.

Remediation

This issue has been acknowledged by Avantis Labs, Inc..

Zellic © 2024 ← Back to Contents Page 24 of 38

Avantis Smart Contract Security Assessment September 11, 2024

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. Referral contract inherits PausableUpgradeable, but it is not used

TheReferral contract inherits fromPausableUpgradeable, but it doesnotuse thepausable function-
ality. We recommend removing the inheritance if it is not needed.

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
40841ace ↗.

4.2. Broken checks-effects-interactions patterns

Wefound therearea few instancesofbrokencheck-effects-interactionspatterns inUSDCtransfers.

function claimFees() external onlyGov {
IERC20(usdc).safeTransfer(govTreasury, govFeesUSDC);
IERC20(usdc).safeTransfer(dev, devFeesUSDC);

emit FeesClaimed(govTreasury, govFeesUSDC, dev, devFeesUSDC);
devFeesUSDC = 0;
govFeesUSDC = 0;

}

/**
* @notice Allows a referrer to claim their rebate.
*/
function claimRebate() external {

IERC20(usdc).safeTransfer(msg.sender, rebates[msg.sender]);

emit RebateClaimed(msg.sender, rebates[msg.sender]);
rebates[msg.sender] = 0;

}

Thesearenosecurity issuesat thismoment, butcouldcausean issue in the future if hooksareadded
to the USDC transfers.

Zellic © 2024 ← Back to Contents Page 25 of 38

https://github.com/brankdev/avantis-contracts/commit/40841ace14594f7076dc8298ee9caae222d4b7fd

Avantis Smart Contract Security Assessment September 11, 2024

4.3. Ambiguous comments

We can see the executeLimitOrder function has an onlyOperator modifier, but it is called the
"keepermethod" in the comments.

/**
* @notice Keeper method to close pending market orders
* @param orderId The array of orderIDs
* @param priceUpdateData Pyth price update calldata
*/
function executeMarketOrders(uint[] calldata orderId, bytes[]

calldata priceUpdateData) external payable onlyOperator{

for(uint i = 0; i< orderId.length; i++){
storageT.priceAggregator().fulfill{value: msg.value}(orderId[i],

priceUpdateData);
}

}

Remediation

This issue has been acknowledged by Avantis Labs, Inc., and a fix was implemented in commit
40841ace ↗.

Zellic © 2024 ← Back to Contents Page 26 of 38

https://github.com/brankdev/avantis-contracts/commit/40841ace14594f7076dc8298ee9caae222d4b7fd

Avantis Smart Contract Security Assessment September 11, 2024

5. ThreatModel This provides a full threat model description for various functions. As time permitted, we analyzed
each function in thecontractsandcreatedawritten threatmodel for somecritical functions. A threat
model documents a given function’s externally controllable inputs and how an attacker could lever-
age each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat model in this
section does not necessarily suggest that a function is safe.

5.1. Module: Trading.sol

Function: closeTradeMarket(uint256 _pairIndex, uint256 _index, uint256
_amount)

This function closes a trade usingmarket execution.

Inputs

• _pairIndex
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The index of the trading pair for the open trade.

• _index
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The index of the open trade.

• _amount
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The collateral by which to update themargin.

Branches and code coverage

Intended branches

• Generates a new orderId for the close-trade market and stores the pending market or-
der.

Test coverage

Negative behavior

• Revert if pending orders aremore than or equal to themax pendingmarket-order value.
Negative test

• Revert if themarket order is already closed or being closed.
Negative test

Zellic © 2024 ← Back to Contents Page 27 of 38

Avantis Smart Contract Security Assessment September 11, 2024

• Revert if the leverage of the trade is zero.
Negative test

Function call analysis

• this.storageT.openTrades(this.__msgSender(), _pairIndex, _index)
• What is controllable? __msgSender(), _pairIndex, and _index.
• If the return value is controllable, how is it used and how can it go wrong?
Checks the existence of the open trade; incorrect valuesmay lead to incorrect
trade information retrieval.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.openTradesInfo(this.__msgSender(), _pairIndex, _index)
• What is controllable? __msgSender(), _pairIndex, and _index.
• If the return value is controllable, how is it used and how can it go wrong?
Retrieves additional information about the open trade; incorrect values may
lead to incorrect information retrieval.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.pendingOrderIdsCount(this.__msgSender())
• What is controllable? __msgSender().
• If the return value is controllable, how is it used and how can it go wrong?
Returns the count of pending orders for the user.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.maxPendingMarketOrders()
• What is controllable? N/A.
• If the return value is controllable, how is it used and how can it go wrong?
Returns themax pendingmarket orders.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.
• PositionMath.mul(_amount, t.leverage)

• What is controllable? _amount and t.leverage.
• If the return value is controllable, how is it used and how can it go wrong?
Calculates the position size based on leverage; the value is used to compare
against the threshold for trade closing.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.priceAggregator().pairsStorage().getPosType(this.__msgSender(),
_pairIndex, _index)

• What is controllable? __msgSender(), _pairIndex, and _index.
• If the return value is controllable, how is it used and how can it go wrong?
Gets the type of this opened position.

• What happens if it reverts, reenters or does other unusual control flow? If it

Zellic © 2024 ← Back to Contents Page 28 of 38

Avantis Smart Contract Security Assessment September 11, 2024

reverts, the entire call will revert — no reentrancy scenarios.
• this.storageT.priceAggregator().getPrice(_pairIndex, Order-
Type.MARKET_CLOSE_PNL)

• What is controllable? _pairIndex.
• If the return value is controllable, how is it used and how can it go wrong?
Returns the orderId of the current order.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.priceAggregator().getPrice(_pairIndex, Order-
Type.MARKET_CLOSE)

• What is controllable? _pairIndex.
• If the return value is controllable, how is it used and how can it go wrong?
Returns the orderId of the current order.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.storePendingMarketOrder(PendingMarketOrder(Trade(this.__msgSender(),
_pairIndex, _index, _amount, 0, 0, False, 0, 0, 0, 0), 0, 0, 0), orderId,
False)

• What is controllable? __msgSender(), _pairIndex, _index, and _amount.
• If the return value is controllable, how is it used and how can it go wrong?
Stores the pendingmarket order — no return value.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.

Function: openTrade(ITradingStorage.Trade t, IExe-
cute.OpenLimitOrderType _type, uint256 _slippageP)

This function opens a newmarket/limit trade.

Inputs

• t
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The details of the trade to open.

• _type
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The type of trade to be opened.

• _slippageP
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The slippage percentage.

Zellic © 2024 ← Back to Contents Page 29 of 38

Avantis Smart Contract Security Assessment September 11, 2024

Branches and code coverage

Intended branches

• If the order type is MARKET or MARKET_PNL, store the pendingmarket order.
Test coverage

• If the order type is LIMIT, store the open limit order.
Test coverage

• If the take profit and stop loss are provided, check if they are in correct range.
Test coverage

Negative behavior

• Revert if the open trades count, plus the pendingmarket open count, plus the open limit-
orders count is greater than or equal to themax trades per pair.

Negative test
• Revert if leverage is not in the correct range.

Negative test
• Revert if the position sizemultiplied by leverage is less than theminimum leverage posi-
tion.

Negative test

Function call analysis

• this.storageT.priceAggregator()
• What is controllable? N/A.
• If the return value is controllable, how is it used and how can it go wrong?
Returned value is the PriceAggregator contract, to which calls will bemade.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.
• aggregator.pairsStorage()

• What is controllable? N/A.
• If the return value is controllable, how is it used and how can it go wrong?
Returned value is the PairStorage contract, to which calls will bemade.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.
• this.storageT.pendingOrderIdsCount(this.__msgSender())

• What is controllable? __msgSender().
• If the return value is controllable, how is it used and how can it go wrong?
Returns the count of pending orders for the user.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.maxPendingMarketOrders()
• What is controllable? N/A.
• If the return value is controllable, how is it used and how can it go wrong?
Returns themax pendingmarket orders.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.

Zellic © 2024 ← Back to Contents Page 30 of 38

Avantis Smart Contract Security Assessment September 11, 2024

• this.storageT.openTradesCount(this.__msgSender(), t.pairIndex)
• What is controllable? __msgSender() and t.pairIndex.
• If the return value is controllable, how is it used and how can it go wrong?
Returns the count of open trades for the user and trading pair.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.pendingMarketOpenCount(this.__msgSender(), t.pairIndex)
• What is controllable? __msgSender() and t.pairIndex.
• If the return value is controllable, how is it used and how can it go wrong?
Returns the count of pendingmarket orders for the user and trading pair.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.openLimitOrdersCount(this.__msgSender(), t.pairIndex)
• What is controllable? __msgSender() and t.pairIndex.
• If the return value is controllable, how is it used and how can it go wrong?
Returns the count of pendingmarket orders for the user and trading pair.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.maxTradesPerPair()
• What is controllable? N/A.
• If the return value is controllable, how is it used and how can it go wrong?
Returns themax amount of trades per pair.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.
• PositionMath.mul(t.positionSizeUSDC, t.leverage)

• What is controllable? t.positionSizeUSDC and t.leverage.
• If the return value is controllable, how is it used and how can it go wrong?
Calculates the position size based on leverage.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• pairsStored.pairMinLevPosUSDC(t.pairIndex)
• What is controllable? t.pairIndex.
• If the return value is controllable, how is it used and how can it go wrong?
Retrieves theminimum leverage position USDC for the trading pair.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• pairsStored.pairMinLeverage(t.pairIndex, False)
• What is controllable? t.pairIndex.
• If the return value is controllable, how is it used and how can it go wrong?
Retrieves theminimum leverage for the trading pair.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• pairsStored.pairMaxLeverage(t.pairIndex, False)
• What is controllable? t.pairIndex.

Zellic © 2024 ← Back to Contents Page 31 of 38

Avantis Smart Contract Security Assessment September 11, 2024

• If the return value is controllable, how is it used and how can it go wrong?
Retrieves themaximum leverage for the trading pair.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.transferUSDC(this.__msgSender(), address(this.storageT),
t.positionSizeUSDC)

• What is controllable? __msgSender() and t.positionSizeUSDC.
• If the return value is controllable, how is it used and how can it go wrong?
Transfers USDC from the caller to the storage contract.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.firstEmptyOpenLimitIndex(this.__msgSender(), t.pairIndex)
• What is controllable? __msgSender() and t.pairIndex.
• If the return value is controllable, how is it used and how can it go wrong?
Finds the first empty open limit index for the user and trading pair.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.storeOpenLimitOrder(OpenLimitOrder(this.__msgSender(),
t.pairIndex, index, t.positionSizeUSDC, t.buy, t.leverage, t.tp, t.sl,
t.openPrice, _slippageP, block.number, 0))

• What is controllable? __msgSender(), t.pairIndex, index,
t.positionSizeUSDC, t.buy, t.leverage, t.tp, t.sl, t.openPrice,
block.number, and _slippageP.

• If the return value is controllable, how is it used and how can it go wrong?
Stores an open limit order — no return value.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.
• aggregator.executions().setOpenLimitOrderType(this.__msgSender(),
t.pairIndex, index, _type)

• What is controllable? __msgSender(), t.pairIndex, index, and _type.
• If the return value is controllable, how is it used and how can it go wrong?
Sets the open limit order type— no return value.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.
• aggregator.getPrice(t.pairIndex, OrderType.MARKET_OPEN)

• What is controllable? t.pairIndex.
• If the return value is controllable, how is it used and how can it go wrong?
Returns the orderId of the current order.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• aggregator.getPrice(t.pairIndex, OrderType.MARKET_OPEN_PNL)
• What is controllable? t.pairIndex.
• If the return value is controllable, how is it used and how can it go wrong?
Returns the orderId of the current order.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

Zellic © 2024 ← Back to Contents Page 32 of 38

Avantis Smart Contract Security Assessment September 11, 2024

• this.storageT.storePendingMarketOrder(PendingMarketOrder(Trade(this.__msgSender(),
t.pairIndex, 0, 0, t.positionSizeUSDC, 0, t.buy, t.leverage, t.tp, t.sl,
0), 0, t.openPrice, _slippageP), orderId, True)

• What is controllable? __msgSender(), t.pairIndex, t.positionSizeUSDC,
t.buy, t.leverage, t.tp, t.sl, t.openPrice, and _slippageP.

• If the return value is controllable, how is it used and how can it go wrong?
Stores the pendingmarket order — no return value.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.

Function: updateMargin(uint256 _pairIndex, uint256 _index, ITrad-
ingStorage.updateType _type, uint256 _amount, bytes[] priceUpdateData)

This function could be used by traders to update themargin of their open trade.

Inputs

• _pairIndex
• Control: Fully controllable.
• Constraints: No constraints.
• Impact: The index of the pair of that trade.

• _index
• Control: Fully controllable.
• Constraints: No constraints.
• Impact: The index of the trade.

• _type
• Control: Fully controllable.
• Constraints: No constraints.
• Impact: The type of the trade.

• _amount
• Control: Fully controllable.
• Constraints: No constraints.
• Impact: The amount to withdraw or deposit.

• priceUpdateData
• Control: Fully controllable.
• Constraints: No constraints.
• Impact: The price data for that pair.

Intended branches

• If the trade is open and the new leverage lies between the correct range, the trade is ex-
ecuted.

Test coverage
• Tokens are transferred to the user if it is a withdraw call.

Zellic © 2024 ← Back to Contents Page 33 of 38

Avantis Smart Contract Security Assessment September 11, 2024

Test coverage
• Tokens are transferred from the trader address to the storage contract if it is a deposit
call.

Test coverage

Negative behavior

• Beingmarket-closed for the trade prevents further updates (ALREADY_BEING_CLOSED).
Negative test

• The trade should exist with a positive leverage.
Negative test

• The new leverage should lie between theminimum andmaximum range.
Negative test

Function call analysis

• this.storageT.priceAggregator()
• What is controllable? N/A.
• If the return value is controllable, how is it used and how can it go wrong?
Returned value is the PriceAggregator address, to which calls will bemade.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.
• this.storageT.openTrades(this.__msgSender(), _pairIndex, _index)

• What is controllable? __msgSender(), _pairIndex, and _index.
• If the return value is controllable, how is it used and how can it go wrong?
Checks the existence of the open trade; incorrect valuesmay lead to incorrect
trade information retrieval.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.openTradesInfo(this.__msgSender(), _pairIndex, _index)
• What is controllable? __msgSender(), _pairIndex, and _index.
• If the return value is controllable, how is it used and how can it go wrong?
Retrieves additional information about the open trade; incorrect values may
lead to incorrect information retrieval.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• this.pairInfos.getTradeRolloverFee(t.trader, t.pairIndex, t.index, t.buy,
t.initialPosToken, t.leverage)

• What is controllable? t.trader, t.pairIndex, t.index, t.buy,
t.initialPosToken, and t.leverage.

• If the return value is controllable, how is it used and how can it go wrong?
Calculates the trade rollover fee.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• aggregator.getPrice(_pairIndex, OrderType.UPDATE_MARGIN)

Zellic © 2024 ← Back to Contents Page 34 of 38

Avantis Smart Contract Security Assessment September 11, 2024

• What is controllable? _pairIndex.
• If the return value is controllable, how is it used and how can it go wrong?
Returns the new orderId for the current order.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• aggregator.storePendingMarginUpdateOrder(orderId, PendingMargin-
Update(this.__msgSender(), _pairIndex, _index, _type, _amount,
i.lossProtection, marginFees, t.leverage))

• What is controllable? orderId, __msgSender(), _pairIndex, _index, _type,
_amount, and t.leverage.

• If the return value is controllable, how is it used and how can it go wrong?
Stores the pendingmargin update order — no return value.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• this.storageT.priceAggregator().pairsStorage().getPosType(this.__msgSender(),
_pairIndex, _index)

• What is controllable? __msgSender(), _pairIndex, and _index.
• If the return value is controllable, how is it used and how can it go wrong?
Gets the type of this opened position.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• aggregator.pairsStorage().pairMinLeverage(t.pairIndex, isPnl)
• What is controllable? t.pairIndex.
• If the return value is controllable, how is it used and how can it go wrong?
Retrieves theminimum leverage for the trading pair.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.
• aggregator.pairsStorage().pairMaxLeverage(t.pairIndex, isPnl)

• What is controllable? t.pairIndex.
• If the return value is controllable, how is it used and how can it go wrong?
Retrieves themaximum leverage for the trading pair.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.
• this.storageT.updateTrade(t)

• What is controllable? t.
• If the return value is controllable, how is it used and how can it go wrong?
Updates the trade information— no return value.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

• aggregator.fulfill{value: msg.value}
• What is controllable? msg.value.
• If the return value is controllable, how is it used and how can it go wrong?
Fulfills the updatemargin order — no return value.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

Zellic © 2024 ← Back to Contents Page 35 of 38

Avantis Smart Contract Security Assessment September 11, 2024

Function: updateOpenLimitOrder(uint256 _pairIndex, uint256 _index,
uint256 _price, uint256 _slippageP, uint256 _tp, uint256 _sl)

This function updates an open limit order.

Inputs

• _pairIndex
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The index of the trading pair.

• _index
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The index of the order.

• _price
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The price level to set.

• _slippageP
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: Sets the slippage of the limit order.

• _tp
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The take-profit price.

• _sl
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: The stop-loss price.

Branches and code coverage

Intended branches

• If the new take profit and stop loss are in the correct range, update the open limit order.
Test coverage

Negative behavior

• Revert if the time since the order creation is less than the defined timelock period. (This
enforces timelock for order updates.)

Negative test

Zellic © 2024 ← Back to Contents Page 36 of 38

Avantis Smart Contract Security Assessment September 11, 2024

• Revert if _tp is set and not valid according to order type.
Negative test

• Revert if _sl is set and not valid according to order type.
Negative test

Function call analysis

• this.storageT.getOpenLimitOrder(this.__msgSender(), _pairIndex, _index)
• What is controllable? __msgSender(), _pairIndex, and _index.
• If the return value is controllable, how is it used and how can it go wrong?
Returns theopen limit order; this limit order is updatedand later stored in stor-
age.

• Whathappens if it reverts, reenters, ordoesotherunusualcontrolflow? N/A.
• this.storageT.updateOpenLimitOrder(o)

• What is controllable? o.
• If the return value is controllable, how is it used and how can it go wrong?
Updates the open limit order based on the provided information — no return
value.

• What happens if it reverts, reenters, or does other unusual control flow? If it
reverts, the entire call will revert — no reentrancy scenarios.

Zellic © 2024 ← Back to Contents Page 37 of 38

Avantis Smart Contract Security Assessment September 11, 2024

6. Assessment Results At the time of our assessment, the reviewed codewas not deployed to the EthereumMainnet, but a
former version was deployed. Deployment is targeting Q4 and beyond.

During our assessment on the scoped Avantis contracts, we discovered nine findings. No critical
issues were found. Four findings were of high impact, twowere ofmedium impact, twowere of low
impact, and the remaining finding was informational in nature.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Page 38 of 38

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Avantis
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Liquidations and SL/TP trigger might fail due to unnecessary check
	More rewards allocated to the vault than available
	Referrer rebate not paid by traders while closing a position
	Incorrect type verification in force unregistration
	Require check in distributePnlRewardsFraction could be improved
	Pending codeOwners are not deleted in govSetCodeOwner
	Invalid pair index
	PairInfos could not update the address of PairStorage
	Initialize functions are front-runnable

	Discussion
	Referral contract inherits PausableUpgradeable, but it is not used
	Broken checks-effects-interactions patterns
	Ambiguous comments

	Threat Model
	Module: Trading.sol

	Assessment Results
	Disclaimer

